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Abstract—This study presents a real-world validation of
localized epidemiological modelling techniques using long-term
care data, focusing on COVID-19 spread in a complex multi-
floor facility. We adapt an advanced agent-based model frame-
work, previously developed for highly localized settings, to
address the unique challenges of smart healthcare in long-
term care environments. The validation process incorporates
quantitative analysis against real-world outbreak data using
statistical tests to compare probability distributions. Quali-
tative This is a change is further performed on randomly
sampled animations. Our methodology addresses computational
challenges of simulating large, multi-floor environments by
implementing optimized pathfinding algorithms and considering
complex disease transmission dynamics. The model accounts
for heterogeneous populations of residents, staff, and visitors,
each with distinct behavioural patterns and epidemiological
responses. Our results found that all simulated outbreak metrics
were statistically likely to have been sampled from the same
distribution as the validation data. This outcome demonstrates
the model’s accuracy in predicting disease spread and its
practical relevance in guiding interventions. This study bridges
the gap between theoretical modelling and practical application
in long-term care settings, providing a validated framework
for understanding and managing pandemic scenarios in com-
plex healthcare environments. Our findings have implications
beyond the current COVID-19 pandemic and long-term care
environments, offering a robust methodology for modelling
and managing future infectious disease outbreaks in various
healthcare settings.

Index Terms—Smart healthcare, agent-based simulation,
long-term care, validation, decision support, machine reason-
ing, risk, epidemiological model, COVID-19, causal network,
Bayesian network

I. INTRODUCTION

Previous research laid the foundation for understanding
the intricate dynamics of COVID-19 spread within local-
ized environments [1], [2]. These studies emphasized the
significance of agent-based models (ABMs) in simulating the
disease’s transmission, incorporating various factors such as
social behaviours, preventive measures, and environmental
characteristics [3]. The integration of these models with smart
healthcare approaches has enabled more precise monitoring
and management of disease spread, particularly in vulnerable
settings where data-driven decision-making is crucial.

This paper introduces a novel validation approach for
the developed ABM framework. The validation process is
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crucial, as it ensures the reliability and accuracy of the
model in predicting and analyzing the spread of COVID-19
under different scenarios. We aim to bridge the gap between
theoretical modelling and practical application, ensuring that
the model can be a valuable tool for policymakers and
healthcare administrators.

The ongoing COVID-19 pandemic has highlighted the
variability of virus spread in different settings, necessitating
models that can adapt to these variations [4], [5]. The
developed ABM framework, previously applied to univer-
sity research labs and elderly care facilities, demonstrated
the effectiveness of various interventions, including mask-
wearing and vaccination [1], [2]. However, to enhance the
model’s utility and relevance, validation against real-world
data is critical. This paper aims to validate the model using
data from long-term care facilities operated by our partner,
the Brenda Strafford Foundation (BSF).

The modelling of COVID-19 spread in long-term care
facilities presents unique challenges that distinguish it from
other environments. These facilities house a particularly
vulnerable population, with residents often having multiple
comorbidities and weakened immune systems, making them
more susceptible to severe outcomes from COVID-19 infec-
tion [6]. The close-quarters living arrangements and high-
touch care required in these settings create conditions con-
ducive to rapid disease spread [7]. Additionally, the frequent
rotation of staff members and the potential introduction of the
virus from visitors adds complexity to the modelling process.
The cognitive impairment of some residents may also impact
their ability to adhere to infection control measures, further
complicating containment efforts [8]. These factors necessi-
tate highly specialized and adaptable models that can account
for the unique dynamics of long-term care environments.

Simulation validation techniques are complex and highly
application-specific. These techniques can be utilized in both
subjective (qualitative) and objective (quantitative) manners,
with notable examples itemized below [9].

o Animation: Graphically display the model’s operational
behaviour over time.

o Degenerate tests: Assess model behaviour under ex-
treme or boundary conditions.

o Event validity: Compare the occurrences within the



simulation model to those in the real system.

« Extreme condition tests: Examine the model’s plausi-
bility under extreme conditions.

« Face validity: Involve expert opinion on the model’s
reasonableness.

« Historical data validation: Utilize historical data not
used in model development to test model behaviour.

These techniques aim to explore various facets of model
behaviour and output. Ensuring model components agree
closely with real-world data and behaviours validates the sim-
ulation’s accuracy and reliability for its intended application
[9], [10].

Given these challenges and the critical importance of
protecting vulnerable populations in long-term care settings,
this study aims to address the following research questions:

1) How accurately can the agent-based model predict the
spread of COVID-19 in a real-world long-term care
facility?

2) To what extent does the model capture the unique
dynamics and challenges of disease transmission in
long-term care environments?

This research contributes to the broader field of epidemiolog-
ical modelling by offering a validated tool for understanding
and managing infectious disease outbreaks. The implications
of this study extend beyond COVID-19, providing insights
and methodologies applicable to future infectious disease
outbreaks in arbitrary local environments. The paper is struc-
tured as follows: the proposed methodology is described in
Section II, experimental results, observations, and discussion
are provided in Section III, and Section IV summarizes our
findings and future directions.

II. METHODOLOGY

This study employs a comprehensive methodology for
epidemiological simulation validation using real-world dis-
ease outbreak data. Our approach integrates data acquisition
and analysis from the BSF’s Bow View Manor long-term
care facility, scenario configuration for this complex multi-
floor environment, ensemble simulation to capture stochastic
variation, and rigorous validation techniques. We use quanti-
tative and qualitative methods, including statistical tests and
expert review, to assess the model’s accuracy and practical
utility. The methodology aims to bridge the gap between
theoretical modelling and real-world application, providing
a validated tool for understanding and managing infectious
disease outbreaks in arbitrary localized environments.

A. Data Acquisition and Analysis

The BSF facility provides the data we use for this valida-
tion study from its Bow View Manor location. The BSF is in-
volved in various scientific and medical research studies with
multiple research institutions. This experience in research
makes the BSF facility a suitable candidate for performing
real-world validation on the simulation framework. Bow
View Manor is a long-term care facility in Calgary, Alberta,
with a maximum occupancy of 237 residents. The scope
of this data includes time-series infection tracking, resident

and staff demographics, population schedules, and facility
occupancy statistics.

For time-series outbreak tracking, BSF staff record the
resident unit, symptoms experienced, date of initial COVID-
19 test, date of subsequent COVID-19 test, and test outcomes.
For facility staff, the organizational position and last-worked
date were additionally recorded. Due to the nature of long-
term care, many of the residents in Bow View Manor are
immunocompromised, increasing the risk of disease transmis-
sion and more severe infection outcomes. Isolation protocols
for infected individuals are implemented as a risk mitigation
strategy, and staff track daily disease progression. Resident
schedules are altered during disease outbreaks to minimize
group activities and mitigate further infection risk.

Disease tracking and statistics have been provided for
all outbreaks from October 2022 to June 2024. BSF staff
recorded eight outbreak events during this period. Summary
statistics detailing key outbreak metrics, including duration,
frequency, and severity of epidemiological outcomes, are cal-
culated. The distributions of these metrics are computed for
quantitative analysis. Individual patient disease progression
and outcome statistics are also explored.

B. Scenario Configuration

Previous studies introducing the localized simulation
framework and integrating decision support utilized the Bio-
metric Technologies Lab space at the University of Calgary
as the scenario map [1], [2]. This space is ~100m?2, signifi-
cantly smaller than the 237-resident Bow View Manor. Agent
pathing through the environment is achieved using computa-
tional optimization techniques such as the bi-directional A*
(A-star) algorithm [11]. This algorithm experiences complex-
ity scaling given by O(b%) where d represents the length of
the shortest path and b is the branching factor [12]. This
results in complexity that is exponential with respect to graph
size, becoming computationally intractable for large graphs
[13]. Comparing the graph size of Bow View Manor to
the proof of concept, the number of nodes increases from
~10,000 to ~720,000. The algorithm scales linearly with
the number of agents, which increases to ~400 compared to
~10. Techniques for simplifying this problem into smaller
sub-problems, such as transit node routing or hub labelling,
allow the problem to be computationally tractable with larger
graphs [14], [15]. Parallelism addresses the computational
load introduced by adding agents to scenarios. Bow View
Manor is additionally structured as a multi-floor complex.
This structure requires special consideration when simulating
ventilation, airborne disease spread, agent pathing, and en-
vironmental interactions. Graph construction for multi-floor
environments introduces node branching beyond the standard
two-dimensional rectilinear pathing.

The scenario map required for simulation is created based
on the floor plan of the respective facility, illustrated in Fig. 1.
BSEF staff provided floor plan documents for all six (five plus
basement) Bow View Manor facility floors. The facility is
split into neighbourhood blocks comprised of resident rooms.
Hallways and common areas connect these neighbourhoods,



with stairwells and elevators between floors. The west wing
of the building spans five floors of resident neighbourhoods
above the basement. The east, central, and north wings span
two floors of resident neighbourhoods above the basement.
The basement contains common areas, offices, and services
for staff and residents.
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Fig. 1. Bow View Manor facility scenario map for simulation. Note that
“common spaces” include professional offices, nursing stations, and other
shared environments.

Agent population composition in Bow View Manor is
heterogeneous, comprising 236 residents, 98 nursing staff
across all positions and shifts, and 64 randomized visitors
for simulation. Each agent archetype follows a different daily
schedule and exhibits different behavioural patterns. This
heterogeneity extends to the epidemiological response for
each group.

C. Ensemble Simulation

Ensemble results are critical for generating meaningful
statistics and distributions in simulated environments. The
inherent stochasticity of ABMs arising from the probabilistic
nature of disease transmission, individual behaviours, and
environmental interactions necessitates ensembling to capture
result frequencies, variance, and extreme outcomes. Statis-
tical summary measures for key epidemiological indicators
like infections, outbreak durations, and outbreak frequencies
can be directly computed. These measures and underlying
probability distributions enable inference for the likelihood
of different epidemiological outcomes and their associated
risk. For this validation study, we simulated a single scenario
with 10,000 ensemble runs informed by data acquired from
the BSF.

D. Transit Node Routing

The requirement for ensemble simulations necessitates sig-
nificant computational efficiency improvements. In previous
work, graph traversal for pathfinding accounted for over 90%
of simulation runtime on average. This overhead becomes
problematic when scaling up to more complex graphs, such
as for the Bow View Manor facility. We implemented several
optimization strategies to address these limitations. A transit
node routing approach was designed to reduce the complexity
of pathfinding. A total of 551 transit nodes were identified
and placed manually on the graph based on known traffic
patterns in the environment. These transit nodes comprise
a sub-graph which enables coarse pathfinding within the
facility, with an example illustrated in Figure 2. We further
employed path pre-computation and caching techniques, al-
lowing frequently used routes to be stored and quickly re-
trieved rather than recalculated. Implementing these changes
resulted in a ~1500x average reduction in agent pathing
computation time. This efficiency allowed for more extensive
ensemble simulations, enhancing the statistical robustness
and reliability of the modelling results.
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Fig. 2. Transit node routing example using Bow View Manor third floor. Red
dots represent vertices in the transit node sub-graph. Blue stars, labelled (a)
and (d), represent the start- and end-points of the agent’s path, respectively.
The nearest proximity transit nodes to each start- and end-point, labelled
(b) and (c), are first identified. Path segments (a)—(b) and (c)—(d) are
computed along with a coarse path segment between the two transit nodes
(b)—(c). These three segments are concatenated to form the full path.

E. Validation and Verification

For the quantitative validation, we compare distributions
at the outbreak level, focusing on key epidemiological in-
dicators that capture the overall dynamics of COVID-19
spread in the long-term care facility. Data provided by the
BSF includes eight distinct outbreak events characterized by
a minimum of two coinciding infections following one or
more days with zero active infections. The selected met-
rics include outbreak duration, outbreak frequency (number
of days between outbreaks), and infections per outbreak.
These metrics provide a comprehensive view of the disease’s
behaviour, encompassing outbreak severity and temporal
characteristics. We employ two well-established statistical
tests to quantitatify the similarity between the simulated
and observed distributions: the Kolmogorov-Smirnov (KS)



test and the Anderson-Darling (AD) test [16], [17]. The KS
test is sensitive to differences in the location and shape of
cumulative distribution functions. The AD test gives more
weight to the tails of distributions, making it particularly
useful for detecting differences in extreme values. We cal-
culate both the test statistics and their associated p-values
for each metric. This approach evaluates the model’s ability
to reproduce the observed outbreak characteristics, providing
a robust foundation for assessing the model’s validity and
predictive power. We additionally explored Kullback—Leibler
(KL) divergence but did not include it in the results for this
study.

Qualitative validation of the model involved reviewing
animations generated from randomly sampled simulation
results. This process allowed for a visual assessment of
key simulation elements, including agent pathing, behaviour,
interactions, and disease transmission mechanics. Observers
examined these animations to verify that agents moved
realistically through the multi-floor environment, following
expected routes and respecting physical barriers. Agent be-
haviour was scrutinized to ensure it matched the typical
routines of residents, staff, and visitors in the facility. Inter-
actions between agents and disease transmission events were
closely monitored to ensure they adhered to epidemiological
rules such as proximity-based transmission and intervention
measures. This review helped identify any discrepancies or
unexpected behaviours that might require further refinement.

F. Causal Analysis and Risk Assessment

Preliminary results for the simulated scenario used in this
validation study were analyzed using decision support tools
and protocols developed in previous studies [2]. Risk assess-
ment for various epidemiological outcomes was conducted,
and the results were contextualized against previous studies.
These results are briefly discussed in Section IV but are
reserved for further investigation.

III. RESULTS

Validation results for this study are presented as Quantita-
tive Analysis, which compares simulated outbreak metrics to
real-world data using statistical tests, and Qualitative Anal-
ysis, which summarizes observer feedback on the model’s
operation and accuracy. These analyses collectively evaluate
the model’s predictive accuracy, practical relevance, and
potential for guiding intervention strategies. Study limitations
are also discussed.

A. Quantitative Analysis

The quantitative analysis of our validation results showed
a statistically significant alignment between the simulated
results and real-world data from the Bow View Manor
facility. Figure 3 presents a timeline of outbreak events,
differentiating staff and resident infections, along with fatality
and hospitalization events. This visualization provides an
overview of outbreak characteristics within the facility.

Figures 4 to 6 graphically compare simulated and real-
world distributions for outbreak duration, frequency, and
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Fig. 3. Real-world outbreak data collected from the Brenda Strafford
Foundation (BSF) Bow View Manor long-term care facility. Staff and
resident infections are delineated and stacked in the area chart. Fatality and
hospitalization events are overlaid.

infections per outbreak, respectively. Each of these quan-
tities has a defined minimum “physical” threshold. These
thresholds are seven days for outbreak duration, one day
for outbreak frequency, and two active coinciding infections.
Visualizations use kernel density estimation with threshold
constraints to approximate probability densities for each
distribution. The KS and AD tests were applied to assess the
similarity of these distributions, reporting both the statistic
and corresponding p-value. A statistic value of 0.0 and a p-
value of 1.0 denote identical sample distributions. The null
hypothesis states that both BSF data and simulated results
were sampled from the same underlying distribution.
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Fig. 4. Comparison of outbreak duration distributions. Kolmogorov-Smirnov
(KS) and Anderson-Darling (AD) statistics are reported.

For outbreak duration, the KS test returned a statistic of
0.36 with p = 0.19, while the AD test returned a statistic of
0.08 with p > 0.25. These results suggest that there is no
significant difference between the simulated and real-world
distributions, and the null hypothesis can be accepted.

For outbreak frequency, the KS test returned a statistic of
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Fig. 5. Comparison of outbreak frequency distributions. Kolmogorov-
Smirnov (KS) and Anderson-Darling (AD) statistics are reported.

0.28 with p = 0.53, while the AD test returned a statistic of
0.20 with p > 0.25. These high p-values indicate a strong
similarity between the simulated and observed distributions
of time intervals between outbreaks and again allow for the
null hypothesis to be accepted.
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Fig. 6. Comparison of infections-per-outbreak distributions. Kolmogorov-
Smirnov (KS) and Anderson-Darling (AD) statistics are reported.

For the number of infections per outbreak, the KS test
returned a statistic of 0.32 with p = 0.31, while the AD
test returned a statistic of 0.72 with p = 0.15. Although the
AD statistic is higher for this metric, the p-values for both
tests remain above the conventional significance threshold of
p = 0.05, suggesting that the null hypothesis can again be
accepted.

These results demonstrate that the simulation successfully
captures key epidemiological characteristics of infectious dis-
ease outbreaks in the long-term care setting. The consistently
high p-values across all metrics imply that the simulated
outcomes are statistically similar to the real-world data and
likely to be sampled from the same underlying distributions.

B. Qualitative Analysis

Qualitative analysis of randomly sampled simulation ani-
mations revealed that the model accurately captured the com-
plex dynamics of epidemiological outbreaks in the Bow View
Manor facility. Reviewers observed that agents (residents,
staff, and visitors) moved realistically through the multi-
floor environment. All agents consistently adhered to physical
constraints and followed expected paths. Disease transmis-
sion mechanisms functioned as intended, with proximity-
based infections occurring in line with implemented epidemi-
ological rules. Agent behaviours and interactions represented
those expected in a long-term care setting, including distinct
patterns for residents, staff, and visitors. Importantly, even
in extreme outbreak scenarios, the model maintained high
fidelity without breakdown in its core dynamics. This qual-
itative assessment complements the quantitative validation,
providing confidence that the simulation accurately represents
the nuanced realities of disease spread in a long-term care
environment.

C. Limitations

This validation study presents results for a simulated
scenario; however, the environment scope is limited to the
Bow View Manor long-term care facility. Similarities be-
tween long-term care facilities operated by the BSF or other
organizations allow a straightforward translation of these
validation results. These similarities further extend to clinical
settings such as hospitals and clinics. The subject behaviour,
transmission mechanics, visibility, and degree of control
will differ in educational institutions or public facilities.
This variability proves challenging to validate due to the
extensive assumptions required for unknown parameters in
each simulated scenario. Applying this simulation framework
to facilities with improved visibility and control over their
occupants will provide results with lower uncertainty and
more explicit methods for validation.

No analytical solution is available to generate risk distri-
butions associated with simulation outcomes. As such, large-
scale validation exercises across arbitrary environments are
not feasible due to the explicit requirement of real-world
comparison data. This simulation framework will benefit
from continued validation exercises following the protocol
proposed by this study.

IV. CONCLUSION AND FUTURE WORK

This study presents a validated smart healthcare framework
for modelling infectious disease spread in long-term care
facilities, focusing on COVID-19. The agent-based model,
adapted for the complex multi-floor environment of Bow
View Manor, demonstrated strong alignment with real-world
outbreak data. Quantitative analysis using Kolmogorov-
Smirnov and Anderson-Darling tests showed no significant
differences between simulated and observed distributions for
key epidemiological indicators, including outbreak duration,
outbreak frequency, and infections per outbreak. Qualita-
tive analysis confirmed the model’s fidelity in representing
agent behaviours and disease transmission dynamics. These



findings validate the model’s accuracy in predicting disease
spread and its practical relevance in guiding interventions. By
bridging the gap between theoretical modelling and practical
application, this framework offers a robust methodology for
understanding and managing infectious disease outbreaks
in long-term care settings, with potential applications to
various healthcare environments beyond the current COVID-
19 pandemic.

Applying decision support protocols defined in previous
studies yielded promising preliminary results. Increased phar-
macological and non-pharmacological intervention measures
resulted in a proportionally decreased excess risk of infection.
Due to the larger number of agents in the scenario used
for this validation study, a disproportionate reduction in
outbreak severity as measured by duration and total infections
was observed. Hospitalization and fatality events were also
strongly correlated with total infection numbers. These results
can be attributed to the increased exposure arising from
cohabitation in the environment, as they were not observed
when capacity reduction schemes were enforced to reduce
agent population density. Further investigation is currently
being conducted.

Future directions for improving computational perfor-
mance and efficiency in agent-based epidemiological sim-
ulations include synthesizing results using machine learning
(ML) techniques. ML approaches such as Graph Neural Net-
works have shown promise in modelling epidemic dynamics
and predicting outcomes more efficiently than traditional
mechanistic models [18]. Large language models could po-
tentially enhance agent-based simulations by enabling more
nuanced modelling of agent behaviours and interactions [19].
Leveraging advanced ML methods to learn patterns from
simulation results may enable rapid synthesis of epidemiolog-
ical projections and insights. These ML-based data synthesis
techniques represent a promising direction for improving
scalability and real-time capabilities in epidemiological mod-
elling tools.
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